Control over multiscale mixing in broadband-forced turbulence
نویسندگان
چکیده
The effects of explicit flow modulation on the dispersion of a passive scalar field are studied. Broadband forcing is applied to homogeneous isotropic turbulence to modulate the energy cascading and alter the kinetic energy spectrum. Consequently, a manipulation of turbulent flow can be achieved over an extended range of scales beyond the directly forced ones. This modifies transport processes and influences the physical-space turbulent mixing of a passive scalar field. We investigate by direct numerical simulation the stirringefficiency associated with turbulence modified by forcing. This is quantified by monitoring the surface-area and wrinkling of a level-set of the passive scalar field. We consider different forcing to manipulate the quality and rate of mixing. The instantaneous mixing efficiency measured in terms of surface-area or wrinkling is found to increase when additional energy is introduced at the smaller scales. The increased intensity of small scales significantly influences the small-scale mixing characteristics depicted by wrinkling, while the forcing of large scales primarily affects the surface-area. Evaluation of geometrical statistics in broadband-forced turbulence indicates that the self-amplification process of vorticity and strain is diminished. This leads generally to smaller extremal values of the velocity gradients but higher average values as a result of the competition between the natural cascading processes and the explicit small-scales forcing.
منابع مشابه
Mixing in manipulated turbulence
A new computational framework for the simulation of turbulent flow through complex objects and along irregular boundaries is presented. This is motivated by the application of metal foams in compact heat-transfer devices, or as catalyst substrates in process-engineering. The flow-consequences of such complicated objects are incorporated by adding explicit multiscale forcing to the Navier–Stokes...
متن کاملMultiscale models for fluid mixing
Recent work of the authors and colleagues on the turbulent mixing of compressible fluids is developed and extended with an emphasis on the multiscale aspects of this work. Specifically, we study an interplay between micro and macro aspects of mixing. 2008 Elsevier B.V. All rights reserved.
متن کاملNonlocal modulation of the energy cascade in broadband-forced turbulence.
Classically, large-scale forced turbulence is characterized by a transfer of energy from large to small scales via nonlinear interactions. We have investigated the changes in this energy transfer process in broadband forced turbulence where an additional perturbation of flow at smaller scales is introduced. The modulation of the energy dynamics via the introduction of forcing at smaller scales ...
متن کاملSuppression of Chaos at Slow Variables by Rapidly Mixing Fast Dynamics through Linear Energy-preserving Coupling
Abstract. Chaotic multiscale dynamical systems are common in many areas of science, one of the examples being the interaction of the low-frequency dynamics in the atmosphere with the fast turbulent weather dynamics. One of the key questions about chaotic multiscale systems is how the fast dynamics affects chaos at the slow variables, and, therefore, impacts uncertainty and predictability of the...
متن کاملMultiscale eddy simulation for moist atmospheric convection: Preliminary investigation
A multiscale computational framework is designed for simulating atmospheric convection and clouds. In this multiscale framework, large eddy simulation (LES) is used to model the coarse scales of 100 m and larger, and a stochastic, one-dimensional turbulence (ODT) model is used to represent the fine scales of 100 m and smaller. Coupled and evolving together, these two components provide a multis...
متن کامل